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The phenomenon of corona discharge from thin-wire or sharp-point electrodes
has found various important applications especially when effective charging devices
are needed. In most parts of the corona charge transport region, the unipolar charge
current is established as a consequence of the drifting of ions of single polarity along
the electric field lines. With negligible diffusion effects, the equation governing
charge transport appears to be of hyperbolic type and has been commonly dealt
with by the method of characteristics or with upwind treatments. The Poisson’s
equation governing the electric potential distribution in the presence of unipolar
charge, on the other hand, is of elliptic type and has been conveniently dealt with by
the finite-element method or the equivalent for typical boundary-value problems. The
first-principle based modeling of the corona device behavior has often involved either
back-and-forth iterations of solving for one of the variables with others fixed or using
time integrations even when steady states are sought. In the present work, the Galerkin
finite-element method is applied uniformly to all the equations in the mathematical
system and the Newton iteration method is utilized to obtain quadratically converged
steady-state solutions in a few steps. Straightforward application of a typical Galerkin
finite-element procedure to all the equations is shown to be quite adequate, because
no mechanism for boundary layer formation is present in the unipolar charge current
in corona devices. Wiggle-free numerical solutions can be obtained without invoking
the upwind schemes or excessive mesh refinements.c© 1999 Academic Press
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1. INTRODUCTION

Corona discharge is a form of electrical breakdown in gases, usually occuring in the
vicinity of a highly curved electrode surface where the local electric field strength becomes
sufficiently large to ionize the gas molecules [1, 2]. Because the strength of the electric
field decreases with distance away from the coronating electrode such as a thin wire or
sharp point, the ionization zone usually remains localized around the coronating electrode
surface where both positive and negative ions are generated. In the case of positive corona,
i.e., the electric field is directed outward from the coronating electrode, negative ions are
drawn toward the coronating electode whereas positive ions move outside the immediate
vicinity of the ionization zone and drift along the electric field lines toward the collector
electrode. Outside the ionization zone is the region called the drift zone, where ions of one
sign dominant [3]. It is impossible to achieve static force equilibrium for every ion in a
region filled with unipolar charge; ions in the drift zone are set in motion in response to the
electric field. Therewith, a unipolar charge current is established. Unipolar charge currents
can become an effective means for delivering charge to electrically insulated objects. The
phenomenon of corona discharge from thin-wire or sharp-point electrodes has found various
important applications in industrial electrostatic precipitation [4] and electrophotographic
printing [5–7]. Accurate computational modeling of the electrostatic behavior of unipolar
charge currents is vital to understanding the optimization of corona charging devices.

In the presence of space charge, electric potential distribution is governed by Poisson’s
equation, which appears to be linear with a given charge density distribution. For unipolar
charge currents, however, the charge density distribution is not knowna priori because it
depends on the electric field or potential distribution. The mathematical system describing
unipolar charge currents with coupled electric potential and charge density is inherently
nonlinear. Solutions by analytical means are limited to a few cases where the problem
configurations are highly symmetric such that the mathematical system can be reduced to
an ordinary differential equation, e.g., the concentric wire-cylinder case [8]. Various ap-
proximate computational methods were used to calculate electric field and charge density
in unipolar charge currents [9–11]. The Deutsch approximation that assumes the electric
field lines to preserve the same shape as that determined by Laplace’s equation is still a
subject of study in publications of the present day [12, 13]. With the advent of power-
ful computers, numerical techniques for solving complicated nonlinear partial-differential
equations have been developed extensively. First-principle based computations of coupled
electric field and charge density for corona devices have become increasingly popular. An
earlier attempt of McDonaldet al. [14] in numerical solutions involved a straightforward
finite-difference method with uniform grid in a rectangular problem domain. Despite the
fact that their numerical techniques were rather primitive with some boundary conditions
being apparently redundant, McDonaldet al. successfully obtained results that compared
favorably with experimental data [14].

To enable convenient computations with nonuniform mesh in complicated geometric con-
figurations, a finite-element method was used in solving Poisson’s equation with a given
charge distribution [15–23]. However, some authors [18] retained the finite-difference al-
gorithm of McDonaldet al. [14] for solving the charge density with a given electric field,
whereas most of the others [15, 19–21] replaced it with the method of characteristics
because, with negligible diffusion effects, the charge transport equation for determining
charge density appears to be of hyperbolic type. Over the years in corona device modelings,
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the method of characteristics has been commonly used for computing the charge density
distribution through the hyperbolic charge transport equation (e.g., [15, 19–21, 24–27]).
The self-consistent charge density and electric field distributions have been often obtained
through a scheme of back-and-forth iterative computations of charge density and electric
field with one fixed while solving for the other. In combination with the method of charac-
teristics for computing the charge density, other means besides the finite-element method
for computing the electric field through Poisson’s equation can also be found in the lit-
erature such as the boundary-element method [24–26], hodograph method [27], etc. The
boundary-element method was sometimes considered as conceptually similar to another
approach called the “charge simulation method” [28, 29].

Although popularly used as an accurate and efficient means for computing the unipolar
charge density for a given electric field, the method of characteristics was found to have
shortcomings such as being awkward for including multiple particle species (as often desired
in modeling electrostatic precipitation devices) and not capable of modeling the diffusion
effect in charge transport [30]. Hence, alternative methods were considered. For instance,
Levin and Hoburg [30] developed a computational scheme using a “donor-cell” method
in computing charge density with a given field and finite-element method for Poisson’s
equation. The apparent purpose of using the donor-cell method is to enable convenient
implementation of an “upstream” difference algorithm for solving the convection dominated
charge transport equation. The technique in combination with the finite-element method and
donor-cell method was further improved by Adamiak [31]. Instead of using the donor-cell
method with upstream difference, Takumaet al.[16] approached solving the charge transport
equation with an upwind finite-element method. As detailed by Brooks and Hughes [32], the
application of the upwind method is desired for removing spurious node-to-node oscillations
or “wiggles” in numerical solutions for convection dominated second-order differential
equations. For some authors uncomfortable with the upwind methods, mesh refinements
for reducing the local “Peclet” number become an alternative way to achieve wiggle-free
solutions. For example, in a recent paper by Medlinet al. [33] in taking a pseudotransient
approach to a steady-state solution with the finite-volume method applied to both Poisson’s
equation and the charge transport equation, centered finite volume discretization was used
(instead of any upwind schemes) with very fine tessellation of the problem domain and a
large enough diffusion coefficient imposed to avoid numerical oscillations.

In numerical solutions for convection-dominated problems, serious wiggles typically
arise from the downstream boundary where variables change rapidly [32]. The large gradi-
ents in variables are a consequence of the strong convection effect that pushes the upstream
“information” toward the boundary while the downstream (Dirichlet) boundary condition
forces the variables to take local values that significantly differ from the natural upstream
information. Thus, a narrow boundary layer is formed at the downstream boundary where
rapid changes occur. Wiggles represent spurious numerical solutions usually due to inad-
equate tessellation of the boundary layer. Unlike the cases with the Dirichlet condition
at the downstream boundary, however, applying a Neumann condition at the downstream
boundary is not likely to invoke any boundary layers, especially when a zero local normal
gradient is imposed. In the absence of the boundary layers, wiggles should not be expected in
the numerical solutions regardless of whether the equation contains convection-dominated
terms or not. As shown in the streamline upwind/Petrov–Galerkin formulations [32], the
weighted residual form of upwinding in an element is to effectively put heavier weight on
the upstream node than on the downstream one. If the gradient is not large, the difference
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between the upstream and downstream nodal values should be small and the weighted
residuals should be insensitive to the weighting function shapes. Thus, whether an upwind
scheme or mesh refinement is needed should not be determined by the appearance of a
convection-dominated equation but rather should be based on the existence of mechanisms
for the boundary layer to form as often controlled by the type of boundary conditions.

For unipolar charge currents in corona devices, only at the coronating (i.e., ion emitting)
electrode the charge density might be controlled with reasonable certainty. In general,
such a control may come from the physical mechanism of space-charged limited currents
that maintains the electric field strength around the coronating electrode at a threshold
value for corona onset despite the variations in the applied voltage, as often referred to as
Kaptsov’s assumption [34]. If the coronating electrode is a thin wire, as commonly seen
in corona devices, the threshold strength of the electric field at the wire surface for corona
onset is reasonably described by Peek’s semi-empirical formula [35]. The application of
Kaptsov’s condition with Peek’s formula as a boundary condition for the charge transport
equation, however, has been cumbersome and several approaches have been proposed in
the literature (e.g., [22]). The mathematical difficulties arise from the fact that Kaptsov’s
condition specifies the normal gradient of electric potential with no explicit functional
connection to the charge density and therefore it cannot be directly used for specifying the
charge density at the coronating wire surface. A common approach (e.g., [30, 31, 33]) is to
specify a value for charge density at the wire surface and complete a solution first (called the
“inner” iteration loop in [31]). Then, examine the electric field strength at the wire surface
and adjust the specified value for charge density accordingly (called the “outer” iteration
loop in [31]). Such an iterative procedure can usually lead to solutions with consistent
charge density and electric field strength that satisfy Kaptsov’s condition.

Unlike most convection diffusion problems, the charge density at outflow (downstream)
boundaries, i.e., the collector electrodes, may not be tightly controlled in reality and, there-
fore, is not obviously known. If diffusion is neglected completely, no outflow boundary
condition for charge density is needed because the charge transport equation becomes a
first-order differential equation. In the charge transport equation, only the diffusion term
contains the second-order derivatives. Hence, inclusion of the diffusion term requires a
boundary conditions at outflow boundaries for the charge density. Descriptions of outflow
boundary conditions for charge density have typically been vague in the literature. Some
authors [31] specified a Neumann condition of zero normal gradient of charge density so
the charge density is allowed to vary along the outflow boundary and the mathematical
specification of the problem becomes complete. Physically speaking, as long as the charge
density is not tightly controlled as specified in terms of the Dirichlet conditions at the outflow
boundaries, charge density boundary layers are unlikely to appear in corona devices. There-
fore, wiggle-free numerical solutions may be achieved in modeling unipolar charge currents
in corona devices without invoking the upwind treatments or excessive mesh refinements.

Because the problem of unipolar charge currents is nonlinear, numerical solutions can
be obtained only through iterations. Various iteration procedures have been used in solving
nonlinear problems. Some people achieved solutions by iteratively solving one equation
for one of the unknown variables with the other variables fixed (e.g., [31]). Yet, some
other people obtained steady-state solutions by solving time-dependent equations via a
pseudotransient approach (e.g., [33]). The usage of Newton’s method of iterations has rarely
been found in modeling the unipolar charge currents in corona devices. Newton’s method of
iterations typically renders a quadratic convergence rate and is quite robust. It is, however,
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at the expense of efforts in implementing the partial derivatives in the Jacobian matrix of
sensitivities of the residuals to the unknowns. Among many authors of publications in the
literature, only Ghione and Graglia [22] seemed to seriously implement the Newton iteration
procedure in their code with a finite-element method for Poisson’s equation and a finite-box
scheme for the charge transport equation. They claimed to obtain superior performance in
convergence to their solutions. Applying Newton iterations to simultaneously solve electric
potential and charge density was briefly mentioned by Levin and Hoburg [30]; but they
did not seem to carry it out to the full extent. With the need of an extra iteration loop for
adjusting the boundary condition for charge density according to Kaptsov’s assumption and
associatedad hoctreatments, the previously implemented Newton iteration procedures may
still not be as complete as desired.

In the present work, the nonlinear problem of coupled electric field and unipolar charge
current is discretized by means of the standard Galerkin finite-element method [36] as
applied uniformly to all the equations in the mathematical system.1 The set of nonlinear
algebraic equations for steady states is solved with Newton iterations for all the unknowns
simultaneously. For the convenience of initiating the Newton iterations from a trivial state
(i.e., every variable takes a zero value), the diffusion term is included in the charge transport
equation even though its effect is negligibly small in terms of numerical accuracy of the
final solutions. The coronating electrode is considered to be a thin wire and thereby the
mathematical problem is described in a two-dimensional domain. Kaptsov’s condition is
naturally incorporated into the boundary condition for charge density at the wire surface by
introducing an auxiliary equation and an auxiliary variable. Thus, the extra iteration loop
explicitly described in [31] for adjusting the charge density at the wire surface is eliminated
and complete Newton iterations can be readily implemented. The reliability of the present
numerical scheme is examined by comparison of computational results with the available
analytical solution for the concentric wire-cylinder case. A few exemplifying results for the
system of a wire enclosed in a rectangular shield are also presented.

2. GOVERNING EQUATIONS

The two-dimensional problem of unipolar charge currents considered in this work consists
of a coronating wire electrode (with circular cross section) of radiusRw and one collector
electrode of much larger dimension than the wire and located about 102Rw away from the
wire, as in typical configurations of corona charging devices. The medium between the wire
and collector electrode is air with the permittivity of free spaceε0. Corona discharge occurs
when the voltage applied on the wireVw exceeds a threshold value corresponding to the
corona-onset electric field strength for local air breakdown. The ionization zone where both
positive and negative ions are present usually forms a uniform sheath over the surface of
coronating wire [1–3]. Following the tradition in corona current modeling, the thickness of
the ionization sheath is ignored, despite the fact that the validity of such a treatment may
be debatable in a physical sense. Thus, a unipolar charge current can be considered in the
entire region between the coronating wire surface and collector electrodes.

1 Although rare in the literature, applying a standard finite-element method for solving the charge transport
equation was described by Abdel-Salamet al. [17] in an early attempt in combination with a charge simulation
method.
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To better focus on the problem of nonlinear coupling between the electric field and space
charge, air flow effects are completely ignored (as is also quite common in corona current
modeling), although the “corona wind” dragged by the unipolar charge flow is well known
in reality. Therefore, the dimensionless mathematical system of governing equations for
electric potentialV and charge densityq in the steady-state unipolar charge current are
Poisson’s equation

∇2V = −q, (1)

and the charge transport equation

∇V · ∇q − q2+ 1

PeE
∇2q = 0, (2)

wherePeE ≡µEV0/D is the electric Peclet number withµE denoting the ion mobility
in an electric field andD the diffusion coefficient of ions. The variables here are made
dimensionless by measuring length in units of the characteristic lengthL ≡ 100Rw, electric
potential in units of a characteristic voltageV0≡ 1kv, and charge density in units ofε0V0/L2.
The corresponding dimensional forms of (1) and (2) can be found in [22, 23].

The boundary conditions for electric potential are rather straightforward to describe. At
the coronating wire surfaceSw and collector electrodesSc, Dirichlet boundary conditions
can be specified based on knowledge of the applied voltages. Typically, we have

V = Vw on Sw and V = 0 onSc. (3)

In corona current modeling, it is usually desirable to specify a value for the charge density
at the coronating wire surface in terms of the Dirichlet boundary condition, i.e.,

q = qw on Sw. (4)

The knowledge aboutqw, however, has been inadequate and directly specifying a physically
consistentqw in (4) is difficult. Although some people attempted to specifyqw based on
empirical relationship between current and voltage measured for particular corona device,
the treatments were mostly ofad hocnature and not as elegant as theoretically desired in
spite of the ease in computational implementation. A physically better founded approach
might be to use Kaptsov’s assumption [34], as often adopted in the literature. Unfortunately,
the commonly accepted Kaptsov’s assumption does not provide a direct description ofqw
but rather it specifies that

n · ∇V = Eonset on Sw, (5)

where Eonset is the threshold strength of the electric field for corona onset or local air
breakdown at wire surface, withn denoting the local unit normal vector that points into
the wire. Traditionally (e.g., [30, 31]), to satisfy (5) in numerical solutions, a value ofqw
is initially assumed in (4) so that (4) can be used as a legitimate boundary condition for
charge density in solving the charge transport equation. Then, the electric field strength at
the wire surface is computed from the obtained solution and its comparison with the value of
Eonsetaccording to (5) determines a new value ofqw for the next iteration. After many such
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“outer-loop” iteractions, a consistent value ofqw can be obtained to allow the local electric
field strength to eventually satisfy (5). Actually, such outer-loop iteractions are eliminated
in the Galerkin finite-element scheme as detailed in Sections 3 and 4 about computational
procedure. In the case where the coronating electrode is a wire, a reasonably accurate value
of Eonsetcan be obtained from the nondimensionalized Peek’s formula [35]

Eonset= L

V0

(
Aδ + B

√
δ

Rw

)
, (6)

whereA= 32.3× 105, B= 8.46× 104 [33], and theδ= 1 are assumed in SI units as used
throughout the present paper.2

With the inclusion of the diffusion term, a boundary condition for charge density at the
outflow boundaries should also be specified to complete the mathematical description of
the problem. Because virtually no definitive knowledge is available for the charge distri-
bution at outflow boundaries such as the collector electrodes, it is usually safe to apply a
Neumann boundary condition in the Galerkin finite-element scheme for the reason discussed
in Section 3. In the present work,

n · ∇q = 0 onSc (7)

is used for simplicity, wheren is the local normal vector at the boundaries pointing outward
from the problem domain. Thus, the mechanism for establishing a boundary layer at outflow
boundaries is eliminated, i.e., a sharp gradient of charge density should not appear near
outflow boundaries.

At symmetry boundariesSsym, if any, the boundary condition should typically be

n · ∇V = n · ∇q = 0 onSsym. (8)

For the problem configurations particularly considered in the present work, Eqs. (1)–(8)
should be quite sufficient to form a complete mathematical system for describing the behav-
ior of unipolar charge currents. It is straightforward to further include the Navier–Stokes
equations (augmented with a term respresenting the Coulomb force) in the mathematical
system for the air flow. Such an endeavor is however not pursued here for simplicity. It
should be noticed that without considering the air flow and diffusion, as in most corona
current models, the ion mobilityµE virtually disappears in the steady-state mathematical
system. Therefore, the results for steady electric potential and charge density distributions
with negligible diffusion effects should not show any difference when the ion mobility is
varied, no matter how the numerical procedures are formulated. However, the electric cur-
rent density should be ion-mobility dependent, because it is a result of the product of ion
mobility, charge density, and electric field.

2 Despite the fact that Peek’s formula was obtained from measurements of AC corona in a wire-cylinder system,
it has been widely used in many other system configurations especially for positive DC corona from a wire (e.g.,
[26, 31, 33]). The justification might come from its form that has no explicit dependence on the size and shape
of the collector electrode and the computational results obtained by using it often agree reasonably well with
experimental data.
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3. GALERKIN FINITE-ELEMENT WEIGHTED RESIDUAL FORMULATION

The nonlinear system of partial differential equations (1)–(8) is descretized by Galerkin’s
method of weighted residuals with finite-element basis functions [36]. In doing so, the two-
dimensional problem domain (inxy space) is divided into a set of quadrilateral elements.
On each element, which is mapped onto a unit square in theξη (computational) domain,
the unknown electric potential and charge density are each expressed in an expansion of
biquadratic basis functions [36], i.e.,

V =
∑

i

Viφi (ξ, η) and q =
∑

i

qiφi (ξ, η),

whereVi andqi are nodal values ofV andq at nodei . Galerkin’s method is applied by
multiplying the governing equations (1) and (2) with the same biquadratic basis functions
as used for the expansions and integrating the weighted equation over the entire domainÄ.
Often, the divergence theorem can be utilized to lower the order of derivatives in Poisson’s
equation and the diffusion term in the charge transport equation so that the Neumann
boundary conditions are naturally incorporated in the weighted residual equations as surface
integrals along the boundary0. The Galerkin method of weighted residuals transforms the
nonlinear partial differential system into a set of nonlinear algebraic equations with finite
degrees of freedom, to what is called the “weak form” of a system. For example,

RV
j =

∫
Ä

(φ j q −∇φ j · ∇V) dÄ+
∫
0

φ j n · ∇V d0 = 0, (9)

Rq
j =

∫
Ä

(
φ j∇V · ∇q − φ j q

2− 1

PeE
∇φ j · ∇q

)
dÄ+

∫
0

1

PeE
φ j n · ∇q d0 = 0. (10)

The contribution of the surface integral along0 in (9) and (10) becomes null atSsymbecause
of (8). At Sc, when the Neumann condition is applied forq such as described in (7), the effect
of the boundary condition can be negligible for largePeE in the residual equations (10).
Because the typical value forD/µE is 2.66× 10−2 volts [37], the corresponding value of
PeE here should be 3.76× 104 as is indeed very large. Thus, the effect of Neumann boundary
conditions forq is inconsequential in the present problem, despite some uncertainties in
using (7) atSc as a boundary condition for charge density.

The Dirichlet boundary conditions (3) and (4) can be imposed by replacing the cor-
responding weighted residual equations ((9) and (10), respectively) associated with the
boundary nodes with the specified nodal values such asVk=Vw on Sw,Vk= 0 on Sc, and
qk=qw on Sw, respectively. The value ofqw in (4), however, is not knowna priori. If qw is
treated as an unknown to be determined in the solution procedure, an additional equation is
needed to complete the mathematical system. Such an additional equation can be expressed
in the form of an independent constraint as given in (5) according to Kaptsov’s assumption.

Strictly applying Kaptsov’s condition at each node on the wire surfaceSw amounts to
adding an equation as given in (5) at each node onSw for determiningqw locally. Thus,
qw is generally allowed to vary alongSw and the number of extra residual equations for
determiningqw is equal to the number of nodes onSw. In implementing the Galerkin finite-
element residuals, incorporating (5) as a Neumann boundary condition atSw in the residual
equations for Poisson’s equationRV

j is much more convenient because implementing a
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surface integral term ∫
Sw

φ j Eonsetd0

in (9) is all that is needed. The auxiliary residual equations at boundary nodes onSw are
formulated in the present work as

Ra
k = Vk − Vw + δaak = 0 for nodes onSw (11)

and nodal values of charge density onSw are imposed according to the Dirichlet condition
(4) asqk=ak whereak denotes the auxiliary unknowns corresponding to (11) actually as
the nodal values ofqw on Sw. Ideally, δa should be set to zero so that a strict Kaptsov’s
condition can be applied. However, using (11) withδa= 0 as the auxiliary residual equations
resulted in serious oscillations in the charge density along the wire surface and a solution
could not easily converge. In the present work, introducing a feedback termδaqw in (11)
with a small value ofδa was found to be quite effective to circumvent the oscillation and
convergence problems. To ensure numerical accuracy, the value ofδa should of course be
set as small as possible under the condition that no serious oscillations ofak occur alongSw.
As shown in Section 5, for most cases examined here, the magnitude ofδaak is indeed much
smaller than that ofVw and its existence in (11) is inconsequential from a practical point
of view. Difficulties of obtaining a reasonably converged solution with a strictly imposed
Kaptsov’s condition were also reported by Ghione and Graglia [22] who suggested several
approximate approaches to avoid spurious solutions. A special relaxation method was also
proposed by Medlinet al. [33] for iteratively obtaining a charge density and field strength
that consistently satisfies Kaptsov’s condition (5).

4. SOLUTION PROCEDURE WITH NEWTON ITERATIONS

Discretized with the Galerkin finite-element method, the partial differential equation
system of (1)–(8) becomes a set of nonlinear algebraic equations described in Section 3 as

R(u) ≡

RV

Rq

Ra

 = 0, (12)

where u≡ (V1,V2, . . . ;q1,q2, . . . ;a1,a2, . . .)
T , RV ≡ (RV

1 , RV
2 , . . .)

T , Rq≡ (Rq
1 ,

Rq
2 , . . .)

T , andRa≡ (Ra
1, Ra

2, . . .)
T as given in (9)–(11), with superscriptT here denot-

ing the transpose.
In the present work, the method of choice for solving the nonlinear equation set (12) is

Newton’s method of iterations [38]. Starting from an initial guessu(0), successive iterates
are determined by

u(m+1)= u(m) + δu with solution ofJ(u(m))δu = −R(u(m)) (13)

whereJ is the Jacobian matrix of sensitivities of the residualsR to the unknownsu, i.e.,

Ji j ≡ ∂Ri

∂u j
. (14)
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At each Newton’s iteration, the Jacobian matrixJ is evaluated with the values of unknowns
u(m) determined in the previous iteration and the resulting linear algebra system (13) is
solved by direct factorization of the Jacobian matrix with a modification of Hood’s frontal
solver [39]. The iteration is continued until both theL2 norm of residual‖R‖ and relative
error of the solution, defined as the largest of max|δVi |/max|Vi | and max|δqi |/max|qi |,
become less than 10−6 or ‖R‖ alone becomes less than 10−10.

Newton’s method of iterations usually renders quadratic convergence to the solution.
Critial here is to make an initial estimate of the solutionu(0) that falls within the domain of
convergence of Newton’s method. If the diffusion term is retained in (2) with a moderate
starting value ofPeE, e.g.,PeE = 100, a simple initial guess

u(0) = 0 (15)

can be used to obtain a quadratically converged solution in typically four or five steps of
iterations. If a realistic value ofPeE = 3.76× 104 is used, however, the diffusion term in
(2) is negligibly small and (2) becomes an equation with virtually all the terms containing
quadratic nonlinearities. Then, the simple initial guess (15) cannot be used because it leads to
a numerically singular Jacobian matrix at the initial iteration step and solution by Newton’s
method, which needs the inverse of the Jacobian matrix as shown in (13), is paralyzed.
Thus, implementing the diffusion term in residual equations (10) has the advantage in
simple initiation of Newton iterations. Once a solution for thePeE of a moderate starting
value is obtained, it can be used as the initial guess for the solution with a realistically large
value ofPeE or even for the case with the diffusion term in (2) or (10) completely removed.
Besides using an unrealistic diffusion coefficient to initiate Newton iterations from a simple
initial guess (15), other effective initialization procedures can of course be formulated.
For example, the solutions shown in the present paper can also be obtained, with even the
diffusion term removed, by using an initial guessu(0) with nodal values ofVi given by the
analytic solution of Laplace’s equation for the concentric wire-cylinder system, i.e.,

V(0) = −Vw log(x2+ y2)

2 log(Rc/Rw)
, (16)

and nodal valuesqi being left as zero, assuming that thexy-coordinate origin is located at
the axis of the coronating wire andRc/Rw = 100.

5. EXEMPLIFYING RESULTS

The configuration of corona charging devices can vary significantly to meet various de-
sign criteria and functionality requirements. If the detailed variations are put aside, most
corona charging devices may be approximated as a wire-cylinder system, where a coronat-
ing wire is enclosed in a cylindrical collector electrode. Therefore, the simplest and most
studied concentric wire-cylinder system is chosen to be the first example to examine here in
Subsection 5.1. Then in Subsection 5.2, the concentric wire-cylinder configuration is ex-
tended to a system with a coronating wire enclosed in a square shield, as a special con-
figuration for corotrons used in electrophotographic processes. To represent corotrons
more generally, the square shield considered in Subsection 5.2 is made rectangular in
Subsection 5.3 with further analysis.
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5.1. Concentric Wire-Cylinder System

The high degree of symmetry of the concentric wire-cylinder system enables reduction of
the partial differential equation system (1)–(8) into an ordinary differential equation system
that allows analytical solution. Moreover, the concentric wire-cylinder system has been
considered as a prototype configuration for analysis of the electrostatic precipitator [4] and
corotron in electrophotographic systems [40].

Although mathematically treating a concentric wire-cylinder system as a one-dimensional
problem is quite adequate, it is computed here in a two-dimensional domain (first quadrant
of the entire domain) for consistent numerical analysis and illustration. The coefficient in
front of the diffusion term in (2), i.e.,Pe−1

E , is assumed here to be 2.66× 10−5, as a negligibly
small number that makes no noticeable difference when compared with the computed results
at Pe−1

E = 0. The two-dimensional mesh of 400 elements used for solving the concentric
wire-cylinder problem is shown in Fig. 1, whereRc/L = 1 andRw/L = 0.01. The number of
the quadrilateral elements is so chosen that the electric field strength atSw calculated with
finite-element basis function expansion has no error greater than 0.1% of the imposed
value Eonset. Typical corotrons in electrophotographic systems use coronating wires of a
diameter of about 100µm; therefore,Rw = 5× 10−5 m is assumed here. Thus,Eonset= 76,
as evaluated with (6), and the corresponding voltage on the coronating wire should then be
3.4999 according to

Vonset= Eonset
Rw
L

log

(
Rc

Rw

)
. (17)

For the case ofVw = 5, theL2 norm of residual‖R‖ decreases from about 1 with (16) as
the initial guess forV andqi = 0 to the order of 10−1, 10−2, and 10−13 as Newton iterations
proceed. The computedqw is 10.494 withδa set to 0.001. The value ofδa is so chosen
here that node-to-node variations ofqw can only be observed at the fifth digit. For example,
node-to-node variations ofqw in the present problem start to show up in the fourth digit

FIG. 1. Finite-element mesh for the problem of corona current in a concentric wire-cylinder system.
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FIG. 2. Equipotentials of electric fieldV in a concentric wire-cylinder system withVw = 5. The equipotential
values are in increments of 0.5 from 0 to 4.5.

whenδa= 10−4. To obtain a physically negative feedback, positive values ofδa should be
used. Because of the residual formulation (11), an increase in the nodal value ofqw results
in a reduction of actual voltage imposed atSw that effectively prevents further increase of
localqw. With δa= 0.001 forVw = 5, the actual voltage imposed on the wire surfaceSw is
4.9895 instead of exact 5 (an insignificant 0.2% of change).

Figures 2 and 3 show the computed equipotential and charge density contours forVw = 5,
respectively. No sign of wiggles can be noticed with the charge transport equation (2) ex-
tremely convection dominated (whenPe−1

E = 2.66× 10−5 or even literally 0). As discussed

FIG. 3. Contours of space charge densityq in a concentric wire-cylinder system withVw = 5. The contour
values are in increments of 1 from 3 to 10.
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in previous sections, the applied Neuman boundary condition (7) at the outflow boundary
Sc naturally becomes inconsequential asPeE increases to large values, by virtue of the
way the Galerkin weighted residuals are formulated (cf. (10)). This is desired for math-
ematical consistency, because as the diffusion effect diminishes at largePeE the charge
transport equation becomes primarily a first-order differential equation that needs only one
boundary condition applied at one of the boundaries, as here withqk=qw at Sw. If another
Dirichlet boundary condition were applied atSc, the mathematical problem approaches the
singular situation or becomes the over-constraint and the picture would change completely.
Figures 4a–4c show charge density contours for the same case as in Fig. 3 but with the
Dirichlet boundary condition applied atSc asq= 2.0, 2.5, and 2.7, respectively. For the
case shown in Fig. 3, the natural value of charge density atSc is computed as 2.7275. Not
surprisingly, eye-offensing wiggles appear when the Dirichlet boundary condition is applied

FIG. 4. Contours of space charge densityq in a concentric wire-cylinder system withVw = 5 and the Dirichlet
boundary condition applied atSc with (a) q= 2.0, (b) q= 2.5, and (c)q= 2.7. The contour values are in incre-
ments of 1 from 3 to 10.
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FIG. 5. Distribution of charge densityq as a function of the radial distance from the wire corresponding to
the solutions for Figs. 3 and 4a, to illustrate wiggles for the case when the Dirichlet boundary conditionq= 2.0
is used.

atSc with the boundary value ofq forced away from its natural value. Well-behaved, smooth
numerical solutions can only be obtrained when the boundary value ofq imposed atSc hap-
pens to be close to its natural value, as seen in Fig. 4c whereq= 2.7. Hence, whether wiggles
in the numerical solutions appear or not is not determined by the form of the convection-
dominated equation but rather is based on whether the mechanisms exist for the boundary
layer to form as controlled by the type of boundary conditions.

Interestingly, equipotential contours corresponding to the solution for Fig. 4a have no
wiggle appearance and appear the same as Fig. 2, unlike the charge density in response
to the applied Dirichlet boundary conditionq= 2 at Sc. The reason apparently is that the
electric potential relates to the charge density with twice integrations because of Poisson’s
equation. The integrations effectively smooth out the small-scale oscillations of wiggles.

To illustrate wiggles inq of the solution for Fig. 4a from a different perspective, Fig. 5
shows the distribution ofq as a function of the radial distance from the wire,

√
x2+ y2,

asq= 2 is applied atSc. As a reference, the charge density distribution from the solution
for Fig. 3 wheren · ∇q= 0 is applied atSc is also shown in Fig. 5. The center of wiggles
deviates from the smooth curve because of the difference in the natural valueq= 2.7275
and imposed valueq= 2 at Sc. The wiggles are typical node-to-node oscillations with an
amplitude of about 0.59 throughout the entire range from the wire to collector electrode.

The results shown in Figs. 2–4 indicate that the axisymmetry of the concentric wire-
cylinder problem is well preserved even in the presence of serious wiggles in the two-
dimensional formulation. This fact provides an independent test on the quality of the present
computational scheme.

The accuracy of the present computational results can be examined by comparison with
the available analytical solution for the concentric wire-cylinder problem (see, e.g., [8]).
Less than 0.1% of difference is found between the computed nodal values of charge density
qi and that from the analytical formula

q = Eonsetϕ

r
√[

ϕ + (1− ϕ)R2
w

/
(r L )2

] , (18)
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TABLE I

Comparison between Computational and Analytical Results

Vw δa qw ϕ f (ϕ) LHS of (19)

3.5 100 7.69× 10−7 1.01× 10−10 2.52× 10−7 1.32× 10−4

4 0.01 2.4283 3.1951× 10−4 0.62604 0.62608
5 10−3 10.495 1.3809× 10−3 1.9599 1.9600
6 5× 10−4 21.828 2.8721× 10−3 3.2749 3.2752
7 5× 10−4 36.189 4.7617× 10−3 4.5809 4.5816

whereϕ≡qwRw/(EonsetL) andr ≡
√

x2+ y2 are all dimensionless variables. For exam-
ple, the computed nodal values ofq at Sc, i.e., r = 1, is 2.7275 and that from (18) with
qw = 10.494 is 2.7279.

Moreover, Table I shows the comparison of the I-V relationship between computational
results and analytical formula (cf. [8])

Vw − Vonset− δaqw
Eonset(Rw/L)

= f (ϕ), (19)

where

f (ϕ) = (
√

1− ϕ − 1) ln ρ +
√

1+ ϕ(ρ2− 1)− 1

−
√

1− ϕ ln

[√
1+ ϕ(ρ2− 1)+√1− ϕ

1+√1− ϕ
]
,

with ρ≡ Rc/Rw. The value ofδa for variousVw here is chosen based on the desire that
node-to-node variations ofqw only be observed at the fifth digit. Here, the values ofVw and
δa are imposed parameters,qw is a computationally solved variable, and the value ofϕ is
calculated based on the value ofqw in its definition given along with (18). The difference
between the right-hand side and left-hand side (LHS) of (19) reflects slight errors in the
computational results. Again, the accuracy of the computational results is quite satisfactory
when compared with the analytical results. With the confidence established on the basis of
the results for the concentric wire-cylinder problem, the present computational scheme is
to be extended in the next subsections for corona devices that are not axisymmetric.

5.2. Wire Enclosed in a Square Shield

A charging device commonly used in electrophotographic printing system is called
corotron, consisting of a thin wire enclosed in a shield of a rectangular cross section with
one of the shield sides being the surface to be charged. The shield here serves as the charge
carrier collector electrodeSc. If all the sides of the shield are of equal length, the cross
section of the shield becomes square. In this subsection, the case of a wire in a square shield
is computed with the radius of the wire and half side length of the square shield being the
same asRw andRc in the last subsection for the concentric wire-cylinder problem. Thus,
the value ofEonsetremains the same. By virtue of the symmetry with the wire positioned at
the center of the square, the first quadrant of the entire two-dimensional domain is computed
here with a mesh of 400 elements. Because the shape of the collector electrode is not the
same as a cylinder, the corona onset voltage at the coronating wire surface may differ from
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FIG. 6. Equipotentials of electric fieldV in the system of a wire in a square shield withVw = 5. The equipo-
tential values are in increments of 0.5 from 0.5 to 4.5.

that for the concentric wire-cylinder system. Ifqw→ 0 is considered as an indicator of
Vw→Vonset, the value ofVonsetcan be determined by iterative computations. In the present
case withVw = 3.558 andδa= 100, the computatedqw is nonuniform in the range from
5.14× 10−6 to 5.21× 10−6, indicating that the value ofVonsetfor the square shield case is
about 3.5575 (rather than 3.4999 for the wire-cylinder case).

Figures 6 and 7 show the computed equipotential and charge density contours forVw = 5,
respectively, for the case of a wire enclosed in a square shield withδa= 10−3. Although
the system is not axisymmetric, the distributions of electric potential and charge density are

FIG. 7. Contours of space charge densityq in the system of a wire in a square shield withVw = 5. The contour
values are in increments of 1 from 1 to 8.
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quite close to the case of an axisymmetric wire-cylinder system. Nonaxisymmetric features
can only be noticed in the outer region with

√
x2+ y2> 0.5. The computedqw for the square

shield case, as expected to be nonuniform about the wire surface, varies in a small range
from 8.5064 to 8.5139 with the minimum at 45◦ polar angle (i.e., atx= y). Even though
the closest distance between the wire and shield is the same as that in the wire-cylinder
case of Figs. 3 and 4, the charge density for the square shield case atVw = 5 is reduced by
about 20% from that for the wire-cylinder case. AtVw = 6 and 7 withδa= 5× 10−4, the
computed mean values ofqw for the square shield case are around 18 and 30, respectively.
For cases withRc/L set to 2, i.e., the collector electrodes are made twice as large as
those in Figs. 1–7, the computedqw for cylindrical and square shield electrodes are 1.4783
and about 1.167, respectively atVw = 5. Because the total current from a coronating wire is
conserved through any equipotential surface, with the local electric field strength maintained
as a constantEonsetaccording to Kaptsov’s assumption and negligible diffusion effects, the
value of local charge density at the wire surfaceqw directly reflects the total corona current
for a given constant ion mobilityµE. Hence, the total current output from a coronating wire
in a square shield is expected to the about 20% less than that in a wire-cylinder system with
comparable dimensions.

5.3. Wire Enclosed in a Rectangular Shield

Most corotrons used in an electrophotographic system have a cross section of the rectan-
gular shape. Therefore, a study of the case with a wire enclosed in a rectangular shield is of
practical importance. For illustrative purposes, the rectangular shield considered here has
reflective symmetries and only the first quadrant needs to be computed. It has one side at 1
and the other at 1.5 in terms of dimensionless distances from the wire, as shown in Fig. 8 for

FIG. 8. Finite-element mesh for the problem of a corona current in the system with a wire enclosed in a
rectangular shield.



986 JAMES Q. FENG

FIG. 9. Equipotentials of the electric fieldV in the system of a wire in a rectangular shield withVw = 5. The
equipotential values are in increments of 0.5 from 0.5 to 4.5.

FIG. 10. Contours of space charge densityq in the system of a wire in a rectangular shield withVw = 5. The
contour values are in increments of 0.5 from 0.5 to 5.5 and 5.8.
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the tessellated domain with 624 elements. WithVw = 3.657 andδa= 100, the computated
qw is in the range from 5.53× 10−6 to 5.78× 10−6. Thus, the value ofVonsetfor the present
rectangular shield case is about 3.6564, further increased from 3.5575 for the square shield
case.

Figures 9 and 10 show the equipotential and charge density contours in the system of a
wire enclosed in a rectangular shield forVw = 5 withδa= 10−3, respectively, In a rectangular
shield of an aspect ratio 1.5, nonaxisymmetry becomes pronounced. The nonaxisymmetric
distribution ofq can be seen in Fig. 10, espectially in the contour of 5.8 near the wire
surface. The computedqw for the rectangular shield case varies from 5.8089 to 5.9435 with
the maximum and minimum at 0◦ and 90◦ polar angles (i.e., atx andy axes), respectively.
At Vw = 6 and 7 withδa= 5× 10−4, the computed mean values ofqw for the rectangular
shield case are around 13 and 22, respectively. Because one of the shield sides is further
away from the wire, the total current output from the wire in the rectangular shield at the
same voltage is reduced by about 30% from that for the case of the square shield.

6. CONCLUDING REMARKS

In the present work, the Galerkin finite-element method is shown to be uniformly ap-
plicable to all the equations describing the problem of unipolar space charge current in
corona devices, despite the fact that the charge transport equation is convection dominated.
By introducing an auxiliary equation and an auxiliary variable, Kaptsov’s condition for
a constant electric field strength at the coronating wire surface is naturally incorporated
into the boundary condition for charge density at the wire surface. Using the Newton iter-
ation method enables quadratical convergence of steady-state solutions such that they are
obtained in a few steps. Comparison with solutions between application of Neumann and
Dirichlet boundary conditions for charge density at the collector electrode demonstrates that
whether wiggles in the numerical solutions appear or not is not determined by the form of
the convection-dominated equation but rather by the type of boundary conditions. Because
a Neumann (instead of Dirichlet) boundary condition is applied at the collector electrode in
corona current problems, wiggle-free numerical solutions can be obtained without invoking
the upwind schemes or excessive mesh refinements.

The accuracy of the results computed here with the Galerkin finite-element method is
verified by comparison with the available analytical solution for the concentric wire-cylinder
system. The results for a wire enclosed in a shield electrode of square shape show little
nonaxisymmetry near the wire. If the shield electrode is made rectangular with an aspect
ratio of 1.5, pronounced nonaxisymmetry is revealed in the results, especially for charge
density. With the same closest distance between the coronating wire and shield electrode,
the largest output corona current at a given applied voltage is obtained when a concentric
cylindrical shield is used. For the same coronating wire and the same applied voltage,
using a square shield would produce output corona current about 20% less than the case
of a cylindrical shield. If a rectangular shield of 1.5 aspect ratio is used, the output corona
current would be further reduced from the case of a square shield by about 30% for the
same coronating wire and applied voltage. Even though the results computed in the present
work are rather elementary for an illustration purpose, they may provide valuable theoretical
guidance for the design of efficient corotrons practically used in electrophotographic printing
systems.
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